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Weak non-self-averaging behavior for diffusion in a trapping environment
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The statistics of equally weighted random paths (ideal polymer) is studied in two- and three-
dimensional percolating clusters. This is equivalent to diffusion in the presence of a trapping environ-
ment. The number of step walks, N, follows a logarithmic-normal distribution with a variance growing
asymptotically faster than the mean, which leads to a weak non-self-averaging behavior. Critical ex-
ponents associated with the scaling of the two-point correlation function do not obey standard scaling

laws.

PACS number(s): 05.40.+j, 36.20.Ey, 61.43.—j

Diffusion of independent particles in the presence of
randomly distributed traps has been studied for a variety
of purposes. Besides being a prototype of a disordered
system which allows for some analytical treatment [1,2],
it may describe migration properties of excitons in mixed
organic crystals [3] as well as the diffusion-controlled re-
action of diffusing particles with immobile centers.

A much less trivial problem is the diffusion of indepen-
dent particles on a percolating cluster [4] when the envi-
ronment acts as a perfect trap. Specifically let us consid-
er a lattice where a given site acts as a perfect trap for
particle motion with probability 1—p. We will consider
the diffusion problem on the incipient infinite cluster at
the percolation threshold, p =p,, both in two (square lat-
tice) and three (cubic lattice) dimensions, where particles
can jump only between nearest-neighbor sites and are ab-
sorbed upon hitting a trap. Thus at variance with previ-
ous studies where diffusion occurs on arbitrary (finite and
infinite) clusters [1], we will focus on the statistics of ran-
dom paths having a common origin in the incipient
infinite cluster.

This model differs from the usual kinetic random paths
(random walk) on the same structure by the fact that the
weight given to each path is (a constant) independent of
the particular path, and that the total probability is not
conserved [5,6]. Thus this model is the exact equivalent
of the well-known self-avoiding-walk (SAW) problem on
the same structure when self-avoidance is negligible, and
is also known as the ideal-chain (IC) problem [5].

In view of the fact that the SAW problem on strongly
correlated disorder (such as the incipient infinite cluster)
appeared to be extremely difficult to understand [7]. Itis
worthwhile to first understand the simpler problem of a
single polymer coupled with disorder but without
excluded-volume effects.

We will follow the method developed in a previous
work [6]. The basic idea of this method is that the discre-
tized version of the master equation for the probability
P, x(N) of being at site x after N steps, having started
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from x, on a lattice of coordination z, can be expressed as
a product of random matrices (transfer matrices) contain-
ing the information about the percolating cluster ¢. The
number of N-step walks in € with extrema xg,x is then
Cy x(N )=z"P, L(N), and the total number of walks
with origin in x, is Cy=3,C, 4(N), which will play a
role similar to the partition function.

Let P(@) be the probability of €. The quenched aver-

age for the gthe moment of the end-to-end distance of an
N step walk w is defined as

R =326 |1 SRIwOW;E) |, (1)
@ CN w

where O(w:@)=1 if w C € and 0 otherwise, and R (w) is
the distance between the extrema of a walk w. Similarly
the probability that a surviving (not trapped) particle is at
site x after an N step walk can be defined by
P(x,N)=C, ,(N)/Cy [which is different from the quan-
tity PXO,X(N )= CXO,X(N )/z" appearing in the master equa-
tion because it is normalized to unity, while the latter is a
nonconserved quantity].

It is important to notice that the disorder average was
performed only on configurations @ that span the lattice
at the percolation threshold (that is, the subset of the
clusters that are infinite), each configuration counted one
in sampling.

Our best estimate for the exponent associated with the
end-to-end distance (R})~N?' is v=0.58+0.03 in
d =2 and v=0.501+0.03 in d =3 (see Fig. 1). These
values were obtained as an average of values calculated
by a regression procedure, Padé techniques, and standard
extrapolating methods. The errors are statistical.

The data employed were obtained by averaging five
different sets consisting of 1000 configurations each. The
number of sites in the configurations was typically 15000
for d =2 and 40000 for d =3. The maximum number of
steps was N =1600 and 600 in d =2, 3, respectively, well
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FIG. 1. Log-log plot for the quenched averaged end-to-end
distance R,(N)=(R}%) ford =2 (0) and d =3 (A). The solid
line has a slope of 1.16, while the dotted line has 1.00 for
d =2,3, respectively.

below the point at which finite-size effects become detect-
able. In d =3 higher values of N do not change the pre-
vious estimate within our numerical errors. It should be
noted that there seems to be a crossover between a
subdiffusive regime (v <0.5, for both d =2 and 3) to a re-
gime where the system is superdiffusive (v>0.5) (see Fig.
1) starting around N =100. Figure 2 shows the local
slope vy as a function of 1/N in d =2 which gives sup-
port to the above value.
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FIG. 2. Local slope for the two exponents v and d /4 as func-
tion of 1/N in the case d =2. Also shown by an arrow are the
values obtained from the Padé analysis.

We also stress that the present problem is different
from another interesting model, the freely jointed chain
(with no excluded volume) in the presence of random obs-
tacles [8], because our initial starting point is anchored.
In this latter case a stretched chain is to be expected, as
discussed in [9], and Flory-Lifshitz arguments do not ap-
ply.

Scaling of the quenched average of the probability den-
sity to be at site R at the discrete time N has been numer-
ically investigated using the standard ansatz [10].

P(R,N)= L ” R, , (2)
NV F Nl v
where F(x) is a universal function such that

F(x)~exp(—x?) for x >>1, F(x)~x? for x —0, and dg
is the fractal dimension of the infinite incipient cluster
equal to 91/48~1.9 and ~2.5 in d =2,3, respectively
[4]. Note that we have normalized the probability so that
[d“Rp(R)P(R,N)=1, where the density p(R) takes into
account the fact that the support of the measure is frac-
tal.

The universal function x *F(x) can be obtained by
looking at the probability that a walk is a distance R
from the origin. Using the above values of v, a rather
good collapse of the data is found both ind =2 and 3. In
Fig. 3 the collapse of the data is shown in d =2 for
N =400, 800, 1200, and 1600. The best fit is obtained for
6=1.60%0.03, which is not consistent with the scaling
relation [11] §=(1—v) !'=2.38+0.17, taking for v the
value previously given. For small values of the argument
we could fit x FF(x)~x“F ¥, with g = —0.29+0.03.

Consistent values of g and 8 have been obtained by cal-
culating dimensionless ratios of gth moments of the end-
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FIG. 3. Plot of the universal function xdF F(x) vs the dimen-
sionless quantity x =R /N", in d =2. The data shown are an
average over five points. The solid line is the best-fit result
which gives $=1.60+0.03 and g = —0.29+0.03.
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FIG. 4. Log-log plot for the quantity S(N)=1/
P(xo,N)~N?"?ford =2 (0) and d =3 (A). The solid line has
a slope of 0.94, while the dotted line has 1.02 for d =2,3, re-

spectively.

to-end distance [see Eq. (1)] and comparing them with the
prediction coming from Eq. (2) and the assumed form of
the universal function F.

Results of almost the same quality have been obtained
in d=3 where we found 6=1.61%£0.05 and
g=—0.33+0.07. The value of 6 obtained from the rela-
tion (1—v)~! would be §=2.00=0. 12, which again is not
compatible with the above numerical values.

From Eq. (2) the quenched average of the return prob-
ability behaves asymptotically as P(xq,N) o N2,

>>1
Here d is given by d /2=(dy+g )v, which generalizes the
Alexander-Orbach relation [12], and reduces to it when
g=0. A linear fit to the data shown in Fig. 4 gives
d /2=0.94+0.06. This is in perfect accord with the
value (dp+g)v=0.9310.02 obtained by using the values
of v and g previously calculated.

The values shown are derived from an average over
eight different sets with 1000 configurations each. In
d =3 we also find a value d /2=1.0210.07 from the best
fit, while (dy+g)v=1.08+0.04, which is again compati-
ble.

The exponent g is a measure of how favorable the con-
ditions are for the walk to return to the origin. Unlike
the SAW on a Euclidean lattice where g =(y —1)/v>0
[13] and unlike the case of kinetically weighted paths on
any (disordered or not) structure where g =0 [12], the IC
has g <0, i.e., it is quite probable to the return to the
starting point [14].

To better understand the role of large statistical fluc-
tuations [15], we evaluated numerically the probability
density P(C,N) for the distribution of Cy over different
realizations of disorder [analogous results have been ob-
tained for the number N of step returning walks
Cypx,(N)]. Figure 5 shows the function P(InC)

=CP(C,N) for N =400, 800, 1200, and 1600 for the case
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FIG. 5. Calculated distribution P(InC). The solid lines are
the best-fit results derived from Eq. (3). The points shown are
raw data without any smoothing procedure, and with a normali-
zation factor of 2.8" for C.

d =2 where C=Cy. They are very well fitted by a
logarithmic-normal distribution (solid line) of the form

[—(mc—)w)z

2
20'N

P(C,N)= ) (3)

ex
cv 2mol

where the mean Ay, as well as the variance afv,
depend on_N. In terms of the scaled variables (InC
—An)/V 20%, the values of V/2mo,P(C,N) nicely col-
lapse onto a single universal curve (not shown) [16).

It is easy to relate this result to the moments of the dis-
tribution. Indeed from Eq. (3), the logarithmic moment
is Zy(N)=InCy=Ay.

The direct numerical computation of the logarithmic
moment gives, for N >>1,

ZyN)=Nlnu—aN?, @)

with ¢=3.76+0.02, ¥=0.80%0.01, and a=0.52+0.01,
in d =2 [17]. These values were determined by fitting the
tail of the quantity In[Zy(N+AN)/Zy(N)] on data ob-
tained by averaging over eight different sets of 1000
different configurations each. Almost identical values are
found by making the linearization transformation
AN /N —(AN/N)'"¥, which gives a straight line when
¥=0.8. These values can be checked against the N
dependence obtained for Ay assuming the logarithmic-
normal distribution of Eq. (3). The values obtained for
the above parameters are p=3.76+0.01, =0.5210.01,
and ¥=0.7910.01, which is in very good agreement with
the previous estimates.

In the three dimensions we found ¥=0.8510.01
directly and ¥=0.85+0.03 from the fit of Ay [17]. The
other parameters were also compatible.

The variance 0% is directly related to the free-energy
fluctuations, since 0% =(In Cy)*—(In Cy )*~N?X where y
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is a new exponent. From the fit of the logarithmic-
normal distribution in d =2 we obtain y=0.66+0.01,
which we checked against a direct computation of the
logarithmic moments, giving Yy =0.68+0.01. Ind =3 we
found y=0.72%0.01 directly and y=0.70+0.01 from
the logarithmic-normal distribution. Consistent values
are obtained from extrapolation methods and from the
Padé analysis. Note that the exact inequality
(1—x)/v=d /2 [18] is always satisfied.

The fact that the values for the variance and the mean

are such that 0% >>Ay, for N>>1, is not surprising,
since there is no equivalent to the central limit theorem
for random multiplicative processes [19]. We shall refer
to the condition U?v >>Ay (g>1), but with oy <<Ay as
weak non-self-averaging behavior. The averages are dom-
inated by rare events with large values and therefore do
not well represent the asymptotic behavior of the system
[20]. In this respect, a direct evaluation of the probabili-
ty distribution is essential in order to understand the
overall asymptotic behavior [15].
__In the evaluation of the nonlogarithmic moments like
C{,, using Eq. (3), it is necessary to specify the upper limit
of integration, i.e., Cy <z" (the lower limit is of course
Cy 2 1). This stems from the fact that the tail of the dis-
tribution does not decay fast enough and thus violates
Carleman’s criterion [21].

It is easily shown that the upper and lower cutoffs have
no effect on the results for the moments of InC, whose
distribution is a sharply peaked Gaussian for N >>1. A
straightforward calculation in the large-N limit gives

Z,(N=C§ *=zVexp[— AN?] (5)

where 4 =1/2q[In(z/u)]* and ¢=2(1—y), leading to
a survival probability Pg(N)=Cy/z¥~ exp[ — AN?]
(N >>1).

Were the average unrestricted, i.e., taken over all clus-
ters (finite and infinite), then a rigorous result for the
asymptotic behavior of the survival probability in a disor-

dered d-dimensional lattice in which perfect absorbing
traps are present (with probability 1—p) [22,23] would
give an exponent ¢ =d /(d +2). Some attempts to identi-
fy when this asymptotic limit sets in have been unsuccess-
ful [24] due to the large fluctuations present, presumably
of the same kind as those reported here.

No rigorous results are known for the present case.
However, a straightforward extension of the heuristic ar-
gument previously applied to the case of unrestricted
averages [23] would lead to ¢=dpv/(dpv+1) and
x=(dgv+2)/(2dgv+2). With our values for v this
would yield y=0.74%+0.02 in d =2 and y=0.72+0.01 in
d =3, which is satisfactory only in d =3.

In conclusion, we presented a detailed investigation of
the properties for the statistic of equally weighted ran-
dom paths on a percolating cluster both in two (square
lattice) and three (simple cubic) dimensions. Besides
describing diffusion occurring only on the incipient
infinite cluster when the rest of the environment acts as a
perfect trap, this model corresponds to the usual self-
avoiding walk on the same structure, with the self-
avoidance turned off. The coupling between disorder and
self-avoidance seems indeed responsible for the lack of a
definite plausible scenario for the intriguing problem of
the SAW on percolating clusters [7]. The main aim of
the present work was to clarify the effect of the fluctua-
tions and is expressed in Egs. (3)-(5). We also computed
the quenched averaged end-to-end distances and return
probability in two and three dimensions. A generaliza-
tion of the relation between spectral dimension and the
fractal dimension of the lattice was proposed. A proper
methodology to deal with anomalies in the logarithmic-
normal distributions, which might be useful in other
fields, was also described.
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